Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Physiol ; 14: 1238120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885804

RESUMO

Metabolic disorders such as obesity and type 2 diabetes (T2D) are increasingly prevalent worldwide, necessitating a deeper comprehension of their underlying mechanisms. However, translating findings from animal research to human patients remains challenging. This study aimed to investigate the long-term effects of Streptozotocin (STZ) on metabolic, cardiac, and somatosensory function in mice fed a Western diet (WD) of high fat, sucrose, and cholesterol with low doses of STZ administration compared to mice fed WD alone. In our research, we thoroughly characterized energy balance and glucose homeostasis, as well as allodynia and cardiac function, all of which have been previously shown to be altered by WD feeding. Notably, our findings revealed that the treatment of WD-fed mice with STZ exacerbated dysfunction in glucose homeostasis via reduced insulin secretion in addition to impaired peripheral insulin signaling. Furthermore, both WD and WD + STZ mice exhibited the same degree of cardiac autonomic neuropathy, such as reduced heart rate variability and decreased protein levels of cardiac autonomic markers. Furthermore, both groups developed the same symptoms of neuropathic pain, accompanied by elevated levels of activating transcription factor 3 (Atf3) in the dorsal root ganglia. These discoveries enhance our understanding of metabolic activity, insulin resistance, neuropathy, and cardiac dysfunction of diet-induced models of obesity and diabetes. The exacerbation of impaired insulin signaling pathways by STZ did not lead to or worsen cardiac and somatosensory dysfunction. Additionally, they offer valuable insights into suitable diet induced translational mouse models, thereby advancing the development of potential interventions for associated conditions.

2.
Front Neurosci ; 17: 1197759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483350

RESUMO

Short-chain fatty acids (SCFAs), produced by the metabolism of dietary fibers in the gut, have wide-ranging effects locally and throughout the body. They modulate the enteric and central nervous systems, benefit anti-inflammatory pathways, and serve as energy sources. Recent research reveals SCFAs as crucial communicators between the gut and brain, forming the gut-brain axis. This perspective highlights key findings and discusses signaling mechanisms connecting SCFAs to the brain. By shedding light on this link, the perspective aims to inspire innovative research in this rapidly developing field.

3.
Front Cardiovasc Med ; 10: 1105581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844730

RESUMO

More than 50% of patients with heart failure present with heart failure with preserved ejection fraction (HFpEF), and 80% of them are overweight or obese. In this study we developed an obesity associated pre-HFpEF mouse model and showed an improvement in both systolic and diastolic early dysfunction following fecal microbiome transplant (FMT). Our study suggests that the gut microbiome-derived short-chain fatty acid butyrate plays a significant role in this improvement. Cardiac RNAseq analysis showed butyrate to significantly upregulate ppm1k gene that encodes protein phosphatase 2Cm (PP2Cm) which dephosphorylates and activates branched-chain α-keto acid dehydrogenase (BCKDH) enzyme, and in turn increases the catabolism of branched chain amino acids (BCAAs). Following both FMT and butyrate treatment, the level of inactive p-BCKDH in the heart was reduced. These findings show that gut microbiome modulation can alleviate early cardiac mechanics dysfunction seen in the development of obesity associated HFpEF.

4.
Sci Rep ; 12(1): 10754, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750708

RESUMO

The prevalence of peripheral neuropathy is high in diabetic and overweight populations. Chronic neuropathic pain, a symptom of peripheral neuropathy, is a major disabling symptom that leads to a poor quality of life. Glucose management for diabetic and prediabetic individuals often fail to reduce or improve pain symptoms, therefore, exploring other mechanisms is necessary to identify effective treatments. A large body of evidence suggest that lipid signaling may be a viable target for management of peripheral neuropathy in obese individuals. The nuclear transcription factors, Liver X Receptors (LXR), are known regulators of lipid homeostasis, phospholipid remodeling, and inflammation. Notably, the activation of LXR using the synthetic agonist GW3965, delayed western diet (WD)-induced allodynia in rodents. To further understand the neurobiology underlying the effect of LXR, we used translating ribosome affinity purification and evaluated translatomic changes in the sensory neurons of WD-fed mice treated with the LXR agonist GW3965. We also observed that GW3965 decreased prostaglandin levels and decreased free fatty acid content, while increasing lysophosphatidylcholine, phosphatidylcholine, and cholesterol ester species in the sensory neurons of the dorsal root ganglia (DRG). These data suggest novel downstream interplaying mechanisms that modifies DRG neuronal lipid following GW3965 treatment.


Assuntos
Dieta Ocidental , Gânglios Espinais , Animais , Benzilaminas/farmacologia , Dieta Ocidental/efeitos adversos , Homeostase , Receptores X do Fígado/agonistas , Camundongos , Prostaglandina D2 , Qualidade de Vida
5.
Gut Microbes ; 14(1): 2068365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482894

RESUMO

Trillions of bacteria reside within our gastrointestinal tract, ideally forming a mutually beneficial relationship between us. However, persistent changes in diet and lifestyle in the western diet and lifestyle contribute to a damaging of the gut microbiota-host symbiosis leading to diseases such as obesity and irritable bowel syndrome. Many symptoms and comorbidities associated with these diseases stem from dysfunctional signaling in peripheral neurons. Our peripheral nervous system (PNS) is comprised of a variety of sensory, autonomic, and enteric neurons which coordinate key homeostatic functions such as gastrointestinal motility, digestion, immunity, feeding behavior, glucose and lipid homeostasis, and more. The composition and signaling of bacteria in our gut dramatically influences how our peripheral neurons regulate these functions, and we are just beginning to uncover the molecular mechanisms mediating this communication. In this review, we cover the general anatomy and function of the PNS, and then we discuss how the molecules secreted or stimulated by gut microbes signal through the PNS to alter host development and physiology. Finally, we discuss how leveraging the power of our gut microbes on peripheral nervous system signaling may offer effective therapies to counteract the rise in chronic diseases crippling the western world.


Assuntos
Microbioma Gastrointestinal , Doença Crônica , Dieta , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Humanos , Sistema Nervoso Periférico
6.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466363

RESUMO

Obesity is an epidemic, and it is characterized by a state of low-grade systemic inflammation. A key component of inflammation is the activation of inflammasomes, multiprotein complexes that form in response to danger signals and that lead to activation of caspase-1. Previous studies have found that a Westernized diet induces activation of inflammasomes and production of inflammatory cytokines. Gut microbiota metabolites, including the short-chain fatty acid butyrate, have received increased attention as underlying some obesogenic features, but the mechanisms of action by which butyrate influences inflammation in obesity remain unclear. We engineered a caspase-1 reporter mouse model to measure spatiotemporal dynamics of inflammation in obese mice. Concurrent with increased capsase-1 activation in vivo, we detected stronger biosensor signal in white adipose and heart tissues of obese mice ex vivo and observed that a short-term butyrate treatment affected some, but not all, of the inflammatory responses induced by Western diet. Through characterization of inflammatory responses and computational analyses, we identified tissue- and sex-specific caspase-1 activation patterns and inflammatory phenotypes in obese mice, offering new mechanistic insights underlying the dynamics of inflammation.


Assuntos
Técnicas Biossensoriais , Inflamassomos , Animais , Butiratos/farmacologia , Caspases , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Feminino , Inflamassomos/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo
8.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298717

RESUMO

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Assuntos
Envelhecimento/metabolismo , Axônios/patologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Metabolismo Energético , Fator de Crescimento Insulin-Like I/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Sequência de Bases , Proteína beta Intensificadora de Ligação a CCAAT/genética , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Metabolismo Energético/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Fator de Crescimento Insulin-Like I/genética , Fígado/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fatores de Transcrição NFATC/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Polímeros/metabolismo , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/patologia , Transdução de Sinais/efeitos dos fármacos
9.
J Neuroinflammation ; 19(1): 57, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35219337

RESUMO

BACKGROUND: Peripheral neuropathy is a common and progressive disorder in the elderly that interferes with daily activities. It is of importance to find efficient treatments to treat or delay this age-related neurodegeneration. Silencing macrophages by reducing foamy macrophages showed significant improvement of age-related degenerative changes in peripheral nerves of aged mice. We previously demonstrated that activation of the cholesterol sensor Liver X receptor (LXR) with the potent agonist, GW3965, alleviates pain in a diet-induced obesity model. We sought to test whether LXR activation may improve neuropathy in aged mice. METHODS: 21-month-old mice were treated with GW3965 (25 mg/Kg body weight) for 3 months while testing for mechanical allodynia and thermal hyperalgesia. At termination, flow cytometry was used to profile dorsal root ganglia and sciatic nerve cells. Immune cells were sorted and analyzed for cholesterol and gene expression. Nerve fibers of the skin from the paws were analyzed. Some human sural nerves were also evaluated. Comparisons were made using either t test or one-way ANOVA. RESULTS: Treatment with GW3965 prevented the development of mechanical hypersensitivity and thermal hyperalgesia over time in aged mice. We also observed change in polarization and cholesterol content of sciatic nerve macrophages accompanied by a significant increase in nerve fibers of the skin. CONCLUSIONS: These results suggest that activation of the LXR may delay the PNS aging by modifying nerve-immune cell lipid content. Our study provides new potential targets to treat or delay neuropathy during aging.


Assuntos
Doenças do Sistema Nervoso Periférico , Animais , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Receptores X do Fígado/agonistas , Camundongos , Doenças do Sistema Nervoso Periférico/metabolismo , Nervo Isquiático/metabolismo
10.
Neuroendocrinology ; 112(4): 324-337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34034255

RESUMO

INTRODUCTION: Mitochondria are essential organelles required for several cellular processes ranging from ATP production to cell maintenance. To provide energy, mitochondria are transported to specific cellular areas in need. Mitochondria also need to be recycled. These mechanisms rely heavily on trafficking events. While mechanisms are still unclear, hypothalamic mitochondria are linked to obesity. METHODS: We used C2 domain protein 5 (C2CD5, also called C2 domain-containing phosphoprotein [CDP138]) whole-body KO mice primary neuronal cultures and cell lines to perform electron microscopy, live cellular imaging, and oxygen consumption assay to better characterize mitochondrial alteration linked to C2CD5. RESULTS: This study identified that C2CD5 is necessary for proper mitochondrial trafficking, structure, and function in the hypothalamic neurons. We previously reported that mice lacking C2CD5 were obese and displayed reduced functional G-coupled receptor, melanocortin receptor 4 (MC4R) at the surface of hypothalamic neurons. Our data suggest that in neurons, normal MC4R endocytosis/trafficking necessities functional mitochondria. DISCUSSION: Our data show that C2CD5 is a new protein necessary for normal mitochondrial function in the hypothalamus. Its loss alters mitochondrial ultrastructure, localization, and activity within the hypothalamic neurons. C2CD5 may represent a new protein linking hypothalamic dysfunction, mitochondria, and obesity.


Assuntos
Domínios C2 , Hipotálamo , Animais , Hipotálamo/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo
11.
Mol Metab ; 54: 101350, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626852

RESUMO

OBJECTIVE: The vagus nerve provides a direct line of communication between the gut and the brain for proper regulation of energy balance and glucose homeostasis. Short-chain fatty acids (SCFAs) produced via gut microbiota fermentation of dietary fiber have been proposed to regulate host metabolism and feeding behavior via the vagus nerve, but the molecular mechanisms have not yet been elucidated. We sought to identify the G-protein-coupled receptors within vagal neurons that mediate the physiological and therapeutic benefits of SCFAs. METHODS: SCFA, particularly propionate, signaling occurs via free fatty acid receptor 3 (FFAR3), that we found expressed in vagal sensory neurons innervating throughout the gut. The lack of cell-specific animal models has impeded our understanding of gut/brain communication; therefore, we generated a mouse model for cre-recombinase-driven deletion of Ffar3. We comprehensively characterized the feeding behavior of control and vagal-FFAR3 knockout (KO) mice in response to various conditions including fasting/refeeding, western diet (WD) feeding, and propionate supplementation. We also utilized ex vivo organotypic vagal cultures to investigate the signaling pathways downstream of propionate FFAR3 activation. RESULTS: Vagal-FFAR3KO led to increased meal size in males and females, and increased food intake during fasting/refeeding and WD challenges. In addition, the anorectic effect of propionate supplementation was lost in vagal-FFAR3KO mice. Sequencing approaches combining ex vivo and in vivo experiments revealed that the cross-talk of FFAR3 signaling with cholecystokinin (CCK) and leptin receptor pathways leads to alterations in food intake. CONCLUSION: Altogether, our data demonstrate that FFAR3 expressed in vagal neurons regulates feeding behavior and mediates propionate-induced decrease in food intake.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Nervo Vago/metabolismo , Animais , Comportamento Alimentar , Microbioma Gastrointestinal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética
12.
Proc Natl Acad Sci U S A ; 117(42): 26482-26493, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020290

RESUMO

Obesity affects over 2 billion people worldwide and is accompanied by peripheral neuropathy (PN) and an associated poorer quality of life. Despite high prevalence, the molecular mechanisms underlying the painful manifestations of PN are poorly understood, and therapies are restricted to use of painkillers or other drugs that do not address the underlying disease. Studies have demonstrated that the gut microbiome is linked to metabolic health and its alteration is associated with many diseases, including obesity. Pathologic changes to the gut microbiome have recently been linked to somatosensory pain, but any relationships between gut microbiome and PN in obesity have yet to be explored. Our data show that mice fed a Western diet developed indices of PN that were attenuated by concurrent fecal microbiome transplantation (FMT). In addition, we observed changes in expression of genes involved in lipid metabolism and calcium handling in cells of the peripheral nerve system (PNS). FMT also induced changes in the immune cell populations of the PNS. There was a correlation between an increase in the circulating short-chain fatty acid butyrate and pain improvement following FMT. Additionally, butyrate modulated gene expression and immune cells in the PNS. Circulating butyrate was also negatively correlated with distal pain in 29 participants with varied body mass index. Our data suggest that the metabolite butyrate, secreted by the gut microbiome, underlies some of the effects of FMT. Targeting the gut microbiome, butyrate, and its consequences may represent novel viable approaches to prevent or relieve obesity-associated neuropathies.


Assuntos
Transplante de Microbiota Fecal/métodos , Obesidade/microbiologia , Doenças do Sistema Nervoso Periférico/terapia , Animais , Butiratos/metabolismo , Dieta Hiperlipídica , Dieta Ocidental , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microbiota , Neuralgia/metabolismo , Obesidade/fisiopatologia , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/fisiologia
13.
Sci Rep ; 10(1): 6396, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286429

RESUMO

Neuropathic pain caused by peripheral nerve injuries significantly affects sensory perception and quality of life. Accumulating evidence strongly link cholesterol with development and progression of Obesity and Diabetes associated-neuropathies. However, the exact mechanisms of how cholesterol/lipid metabolism in peripheral nervous system (PNS) contributes to the pathogenesis of neuropathy remains poorly understood. Dysregulation of LXR pathways have been identified in many neuropathic models. The cholesterol sensor, LXR α/ß, expressed in sensory neurons are necessary for proper peripheral nerve function. Deletion of LXR α/ß from sensory neurons lead to pain-like behaviors. In this study, we identified that LXR α/ß expressed in sensory neurons regulates neuronal Neuregulin 1 (Nrg1), protein involved in cell-cell communication. Using in vivo cell-specific approaches, we observed that loss of LXR from sensory neurons altered genes in non-neuronal cells located in the sciatic nerve (potentially representing Schwann cells (SC)). Our data suggest that neuronal LXRs may regulate non-neuronal cell function via a Nrg1-dependent mechanism. The decrease in Nrg1 expression in DRG neurons of WD-fed mice may suggest an altered Nrg1-dependent neuron-SC communication in Obesity. The communication between neurons and non-neuronal cells such as SC could be a new biological pathway to study and understand the molecular and cellular mechanism underlying Obesity-associated neuropathy and PNS dysfunction.


Assuntos
Dieta Ocidental , Receptores X do Fígado/metabolismo , Neuregulina-1/genética , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Animais , Orientação de Axônios , Receptores ErbB/metabolismo , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Camundongos , Neuregulina-1/metabolismo , Células de Schwann/metabolismo , Transcrição Gênica
14.
Metabolism ; 102: 153990, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31666192

RESUMO

OBJECTIVE: Rates of overweight and obesity epidemic have risen significantly in the past few decades, and 34% of adults and 15-20% of children and adolescents in the United States are now obese. Melanocortin receptor 4 (MC4R), contributes to appetite control in hypothalamic neurons and is a target for future anti-obesity treatments (such as setmelanotide) or novel drug development effort. Proper MC4R trafficking regulation in hypothalamic neurons is crucial for normal neural control of homeostasis and is altered in obesity and in presence of lipids. The mechanisms underlying altered MC4R trafficking in the context of obesity is still unclear. Here, we discovered that C2CD5 expressed in the hypothalamus is involved in the regulation of MC4R endocytosis. This study unmasked a novel trafficking protein nutritionally regulated in the hypothalamus providing a novel target for MC4R dependent pathways involved in bodyweight homeostasis and Obesity. METHODS: To evaluate the expression of C2cd5, we first used in situ hybridization and RNAscope technology in combination with electronic microscopy. For in vivo, we characterized the energy balance of wild type (WT) and C2CD5 whole-body knockout (C2CD5KO) mice fed normal chow (NC) and/or western-diet (high-fat/high-sucrose/cholesterol) (WD). To this end, we performed comprehensive longitudinal assessment of bodyweight, energy balance (food intake, energy expenditure, locomotor activity using TSE metabolic cages), and glucose homeostasis. In addition, we evaluated the consequence of loss of C2CD5 on feeding behavior changes normally induced by MC4R agonist (Melanotan, MTII) injection in the paraventricular hypothalamus (PVH). For in vitro approach, we tease out the role of C2CD5 and its calcium sensing domain C2 in MC4R trafficking. We focused on endocytosis of MC4R using an antibody feeding experiment (in a neuronal cell line - Neuro2A (N2A) stably expressing HA-MC4R-GFP; against HA-tag and analyzed by flux cytometry). RESULTS: We found that 1) the expression of hypothalamic C2CD5 is decreased in diet-induced obesity models compared to controls, 2) mice lacking C2CD5 exhibit an increase in food intake compared to WT mice, 3) C2CD5 interacts with endocytosis machinery in hypothalamus, 4) loss of functional C2CD5 (lacking C2 domain) blunts MC4R endocytosis in vitro and increases MC4R at the surface that fails to respond to MC4R ligand, and, 5) C2CD5KO mice exhibit decreased acute responses to MTII injection into the PVH. CONCLUSIONS: Based on these, we conclude that hypothalamic C2CD5 is involved in MC4R endocytosis and regulate bodyweight homeostasis. These studies suggest that C2CD5 represents a new protein regulated by metabolic cues and involved in metabolic receptor endocytosis. C2CD5 represent a new target and pathway that could be targeted in Obesity.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Metabolismo Energético/genética , Hipotálamo/metabolismo , Proteínas de Membrana/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Peso Corporal/genética , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Comportamento Alimentar/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Transporte Proteico/genética
15.
Cell Rep ; 25(2): 271-277.e4, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304667

RESUMO

Obesity is associated with many complications, including type 2 diabetes and painful neuropathy. There is no cure or prevention for obesity-induced pain, and the neurobiology underlying the onset of the disease is still obscure. In this study, we observe that western diet (WD)-fed mice developed early allodynia with an increase of ER stress markers in the sensory neurons of the dorsal root ganglia (DRG). Using cell-specific approaches, we demonstrate that neuronal liver X receptor (LXR) activation delays ER stress and allodynia in WD-fed mice. Our findings suggest that lipid-binding nuclear receptors expressed in the sensory neurons of the DRG play a role in the onset of obesity-induced hypersensitivity. The LXR and lipid-sensor pathways represent a research avenue to identify targets to prevent debilitating complications affecting the peripheral nerve system in obesity.


Assuntos
Estresse do Retículo Endoplasmático , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/etiologia , Receptores X do Fígado/fisiologia , Obesidade/complicações , Células Receptoras Sensoriais/efeitos dos fármacos , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Dieta Ocidental/efeitos adversos , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Receptores X do Fígado/agonistas , Masculino , Camundongos , Camundongos Knockout , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo
16.
Elife ; 42015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26076474

RESUMO

Peripheral neural sensory mechanisms play a crucial role in metabolic regulation but less is known about the mechanisms underlying vagal sensing itself. Recently, we identified an enrichment of liver X receptor alpha and beta (LXRα/ß) in the nodose ganglia of the vagus nerve. In this study, we show mice lacking LXRα/ß in peripheral sensory neurons have increased energy expenditure and weight loss when fed a Western diet (WD). Our findings suggest that the ability to metabolize and sense cholesterol and/or fatty acids in peripheral neurons is an important requirement for physiological adaptations to WDs.


Assuntos
Adaptação Fisiológica/fisiologia , Dieta Ocidental , Metabolismo Energético/fisiologia , Gânglio Nodoso/fisiologia , Receptores Nucleares Órfãos/deficiência , Células Receptoras Sensoriais/metabolismo , Análise de Variância , Animais , Calorimetria Indireta , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Redução de Peso/fisiologia
18.
Cell Metab ; 17(4): 534-48, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23562077

RESUMO

The molecular mechanisms involved in the development of obesity and related complications remain unclear. Here, we report that obese mice and human subjects have increased activity of neutrophil elastase (NE) and decreased serum levels of the NE inhibitor α1-antitrypsin (A1AT, SerpinA1). NE null (Ela2(-/-)) mice and A1AT transgenic mice were resistant to high-fat diet (HFD)-induced body weight gain, insulin resistance, inflammation, and fatty liver. NE inhibitor GW311616A reversed insulin resistance and body weight gain in HFD-fed mice. Ela2(-/-) mice also augmented circulating high molecular weight (HMW) adiponectin levels, phosphorylation of AMP-activated protein kinase (AMPK), and fatty acid oxidation (FAO) in the liver and brown adipose tissue (BAT) and uncoupling protein (UCP1) levels in the BAT. These data suggest that the A1AT-NE system regulates AMPK signaling, FAO, and energy expenditure. The imbalance between A1AT and NE contributes to the development of obesity and related inflammation, insulin resistance, and liver steatosis.


Assuntos
Metabolismo Energético , Resistência à Insulina , Elastase de Leucócito/metabolismo , Obesidade/metabolismo , alfa 1-Antitripsina/sangue , Quinases Proteína-Quinases Ativadas por AMP , Adiponectina/sangue , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Células Hep G2 , Humanos , Inflamação , Canais Iônicos/metabolismo , Leptina/metabolismo , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/sangue , Fígado/metabolismo , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Camundongos Transgênicos , Proteínas Mitocondriais/metabolismo , Obesidade/complicações , Obesidade/patologia , Oxirredução , Fosforilação , Piperidinas/farmacologia , Proteínas Quinases/metabolismo , Proteína Desacopladora 1 , Aumento de Peso/efeitos dos fármacos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
19.
Cell Metab ; 14(3): 378-89, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21907143

RESUMO

The protein kinase B(ß) (Akt2) pathway is known to mediate insulin-stimulated glucose transport through increasing glucose transporter GLUT4 translocation from intracellular stores to the plasma membrane (PM). Combining quantitative phosphoproteomics with RNAi-based functional analyses, we show that a previously uncharacterized 138 kDa C2 domain-containing phosphoprotein (CDP138) is a substrate for Akt2, and is required for optimal insulin-stimulated glucose transport, GLUT4 translocation, and fusion of GLUT4 vesicles with the PM in live adipocytes. The purified C2 domain is capable of binding Ca(2+) and lipid membranes. CDP138 mutants lacking the Ca(2+)-binding sites in the C2 domain or Akt2 phosphorylation site S197 inhibit insulin-stimulated GLUT4 insertion into the PM, a rate-limiting step of GLUT4 translocation. Interestingly, CDP138 is dynamically associated with the PM and GLUT4-containing vesicles in response to insulin stimulation. Together, these results suggest that CDP138 is a key molecule linking the Akt2 pathway to the regulation of GLUT4 vesicle-PM fusion.


Assuntos
Adipócitos/metabolismo , Membrana Celular/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Fosfoproteínas , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Sítios de Ligação , Cálcio/metabolismo , Inativação Gênica/efeitos dos fármacos , Insulina/metabolismo , Masculino , Camundongos , Peptídeos/farmacologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/farmacologia , Especificidade por Substrato , Vesículas Transportadoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA